If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+15w=28
We move all terms to the left:
2w^2+15w-(28)=0
a = 2; b = 15; c = -28;
Δ = b2-4ac
Δ = 152-4·2·(-28)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{449}}{2*2}=\frac{-15-\sqrt{449}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{449}}{2*2}=\frac{-15+\sqrt{449}}{4} $
| b-(-12)=-16 | | 2w^2+28=15w | | -10+4x-5=x-15+3x | | 6=0.45y | | 18=m+13 | | m-(-8)=14 | | 2(g+3)=-3 | | (3x+1)/4=-2 | | Y=(2x-2)(x+5) | | (21x+6)(90)=180 | | 2/5n+7=15 | | 14=-12-13b | | 2x=2x+-14 | | -6x-5+x=20x-13 | | T(n)=8n-11 | | 4y-5=2(5-y) | | –5–3w=7w | | 3n+16-16=7n-8-16 | | 5(d-4)=15 | | 3.1-m=6-6m | | 10j=3+7j | | 8x–23=3+22 | | s+523;s=14 | | -1(3x+2=-17 | | Y=21x+34 | | t/11-1=-10 | | (88)(4x)=180 | | x2-4=2 | | 0.546=0.42k | | -6x2+195=15 | | 0.0546=0.42k | | x/4(x+8)=64 |